ACM multimedia
“ada

. §

Chengdu, China OCT 20-24 2021

Ada-VSR: Adaptive Video Super-Resolution with Meta-Learning
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Meta-Transfer Learning Quantitative Results on Vimeo Dataset

Adaptive Video Super-Resolution
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spatio-temporal super-resolution by leveraging external and / Blind Task Adaptation (outer loop) Ny

6 Update 6 and ¢ with respect to average test loss (Dy):
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internal learning.
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Quantitative Analysis on Vid4 Dataset

v External learning to learn weights that can easily adapt to ﬁ%(é’z‘, bi) = E%(é’ B av9£t7;7 b — aV%ﬁ%) (3)

novel conditions for super-resolution tasks.

Method Vid4 External-Training Vid4 [3]
: : : g (D Dynamic Task Generator h End-to-end F k PSNR1 | SSIM NIQE Spatial | T | | PSNR SSIM NIQE
v' Ada-VSR reduces the computational time by reducing the 5. T, S.s Tos So1 Toy S.1 Too Sa Too " t_o ohe TTomewer f T | NIQE ) o | cmpem f f !
dient st ed durine internal learnin 1% 1 | ! i Zooming Slow-Mo [1] 26.30 0.80 5.62 v X 25.98 0.80 5.77
gradient steps required during & = *V vV f — | Temporal Profile [2] 26.50 0.82 5.48 X v 26.27 0.81 5.59
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Problem Statement \ s
4 'S A Qualitative Results
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How can we make our network adapt quickly for blind settings? < - —[— <- | _ 1 _ =
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e Model trained with the assumption of known degradation b VuR
kernel works well for a video with similar degradation.
_ _ _ _ _ S (2 Task Specific Training Piq @ Blind Task Adaptation y
e Deep internal learning is used to tackle the blind settings
but it has large computational time.
o Meta-learning leverages an external dataset to learn pa- Internal Learning and Inference
rameters that can quickly adapt to blind settings durin |
h y P 5 - Input  : LR-LFR test video V1, meta-transfer 1 Generate down-sampled video V4 by down-sampling

test using internal statistics of the input test video. trained model parameter 6, ¢, number of

gradient updates n and learning rate 7y
Output : High-resolution high-frame rate video V7 p

V 1, p with corresponding blur kernel.

/* Internal Learning */
2 for n steps do
3 | Evaluate loss L;,,+(0, ¢) using (4)
(4) 4 | Update 0 < 0 — yVyL;n:(0, @)

Conceptual Overview

Learning weights that can adapt quickly to novel conditions!
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Traditional Approaches Ada-VSR ( Our Approach) 1 5 ¥Update ¢ — Qb o 7v¢£int(97 ¢)
| /* Inference to generate HR-HFR */
6 return Vyp =S, (F(Vrp))
Conclusions

, , L e We present an Adaptive Video Super Resolution framework (Ada-VSR) to generate
e — Vi VLR L VLR Fo Sy Ve high resolution high frame-rate videos from low resolution low frame-rate input videos.
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* Model cannot adapt to new tasks * Model can easily adapt to new tasks xi x% Internal Learning ><1 ><1 % 1 %1 SX4 sz

* Training time is large for a new task

* Training time is less for a new task
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—> Proposed Framework — Adaptation by Internal Learning
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Inference

TSR module SSR module @ 4x spatialdown—sampler 2x temporal down-sampler =———3$p» Forward Pass = = Backprop

e The proposed approach is able to achieve superior enhancement while adapting to
unknown degradation models as shown in our experiments.

Acknowledgement: The work was partially supported by NSF grants 1664172, 1724341 and 1911197.



