

Adversarial Knowledge Transfer from Unlabeled Data

Akash Gupta^{†,*}

Rameswar Panda ^{‡, *} S

* Sujoy Paul [†]

† Jianming Zhang §

g [§] Amit Roy-Chowdhury [†]

[†] University of California, Riverside

[‡] MIT-IBM Watson AI Lab

§ Adobe Research

Problem Overview

Brief Statement

How to transfer knowledge from internet-scaled unlabeled data to improve the performance of given visual recognition task?

Motivation

- Machine learning approaches are data hungry
- Manual data collection is tedious and expensive
- Collected data should have similar data distribution

Source Data

Target Data

(a) Transfer Learning. (Source: Labeled, Target: Labeled)

Source Data

Target Data

(a) Transfer Learning. (Source: Labeled, Target: Labeled)

(b) Unsup. Domain Adaptation. (Source: Labeled, Target: Unlabeled)

Source Data

(a) Transfer Learning. (Source: Labeled, Target: Labeled)

Target Data

(c) Semi-Supervised Learning. (Source: Unlabeled, Target: Labeled)

(b) Unsup. Domain Adaptation. (Source: Labeled, Target: Unlabeled)

Source Data

(a) Transfer Learning. (Source: Labeled, Target: Labeled)

Source Data

Target Data

(c) Semi-Supervised Learning. (Source: Unlabeled, Target: Labeled)

(b) Unsup. Domain Adaptation. (Source: Labeled, Target: Unlabeled)

(d) AKT (ours). (Source: Unlabeled, Target: Labeled)

Source Data

(a) Transfer Learning. (Source: Labeled, Target: Labeled)

Source Data

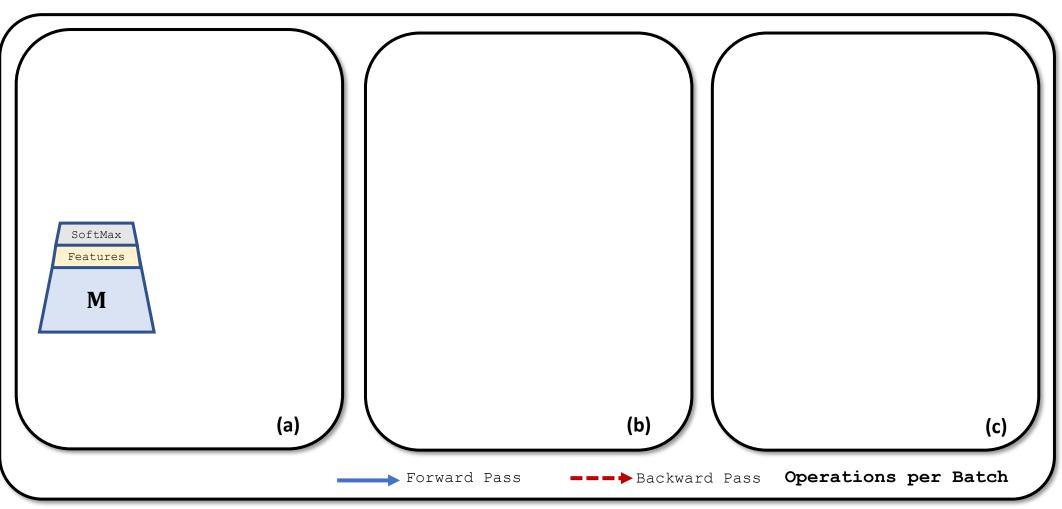
Target Data

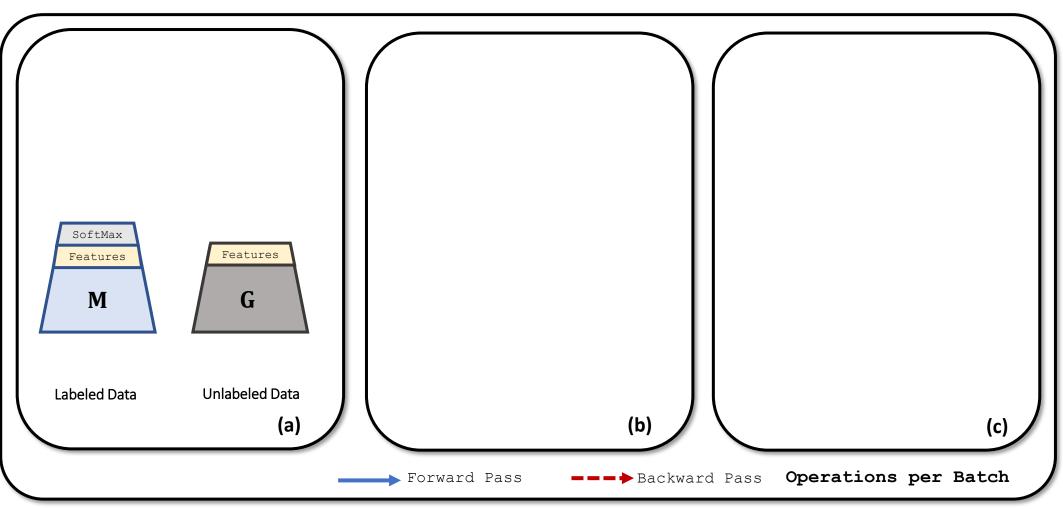
(c) Semi-Supervised Learning. (Source: Unlabeled, Target: Labeled)

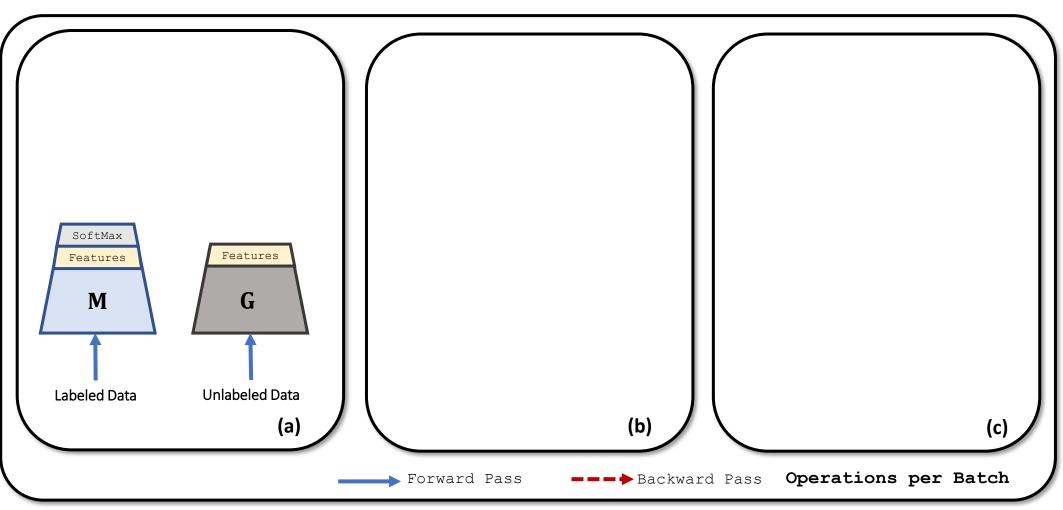
(b) Unsup. Domain Adaptation. (Source: Labeled, Target: Unlabeled)

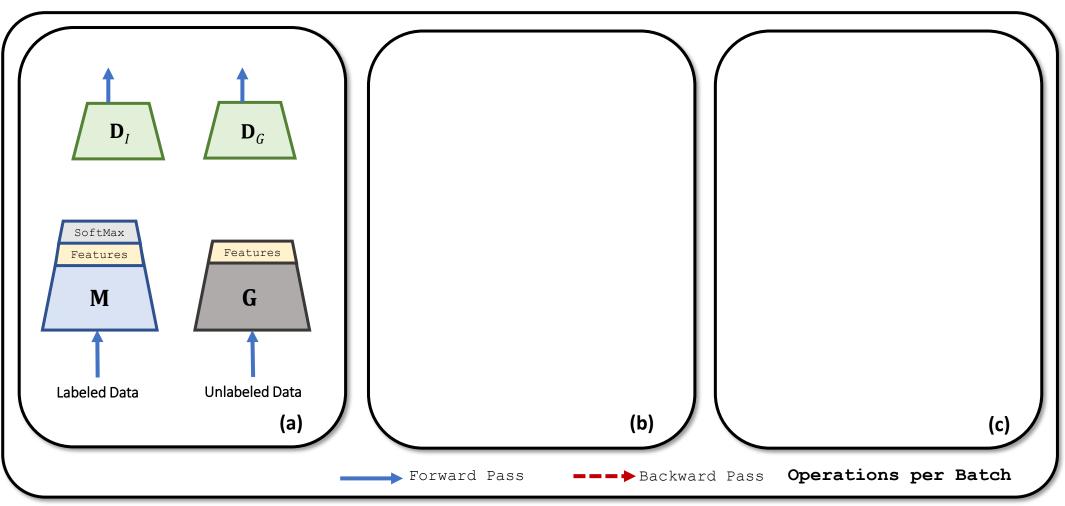
(d) AKT (ours). (Source: Unlabeled, Target: Labeled)

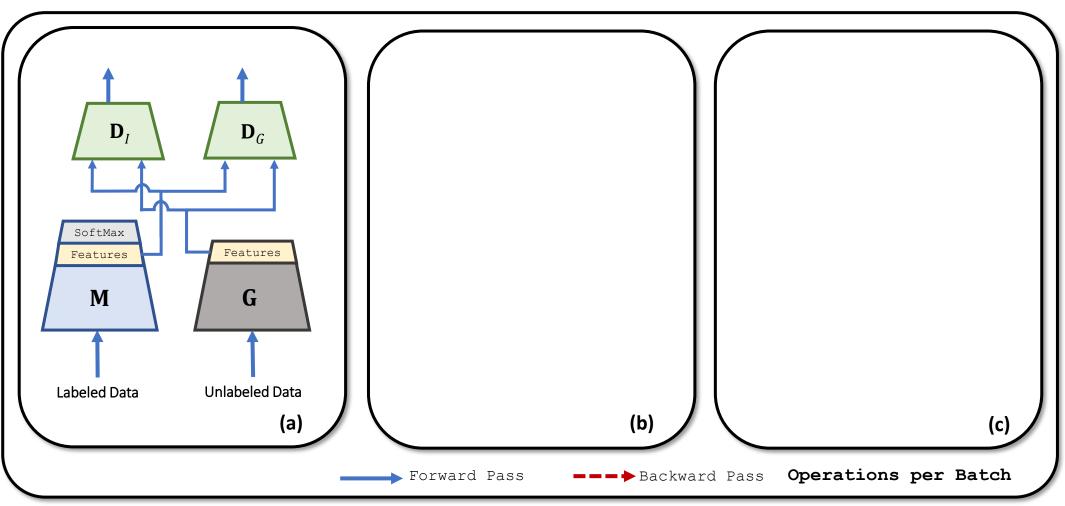
- Unlabeled data may have different data/label distribution \checkmark
- Without defining a pretext task as in Self-Supervised Learning \checkmark

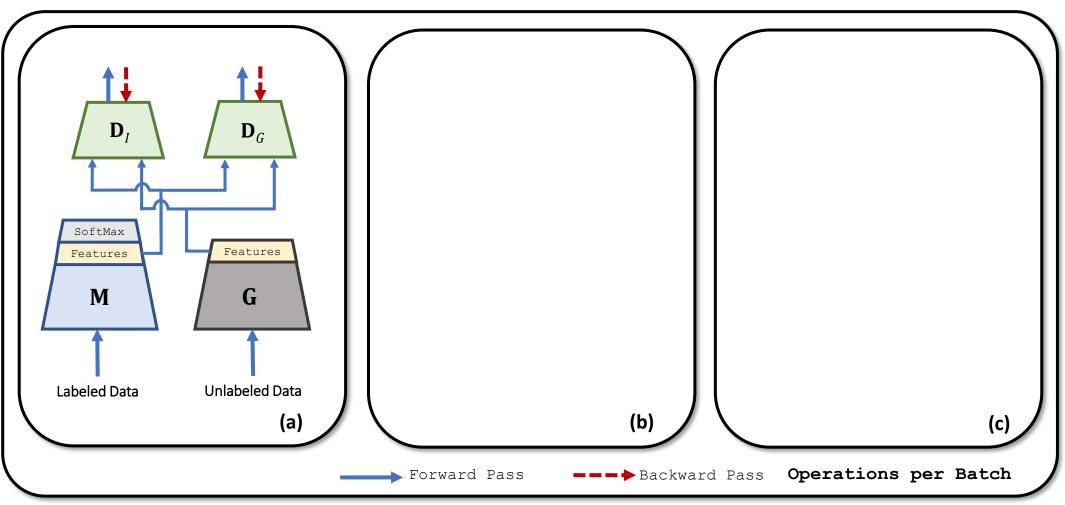


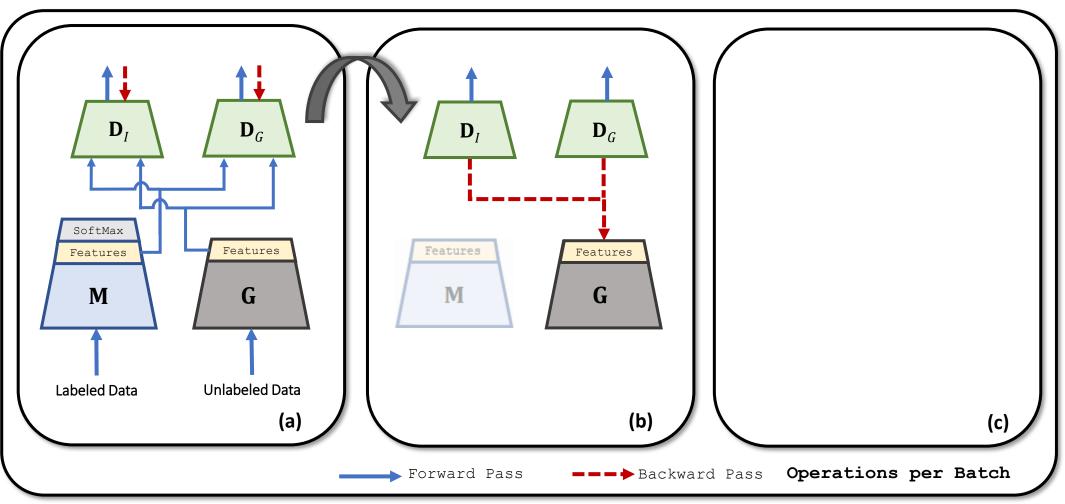


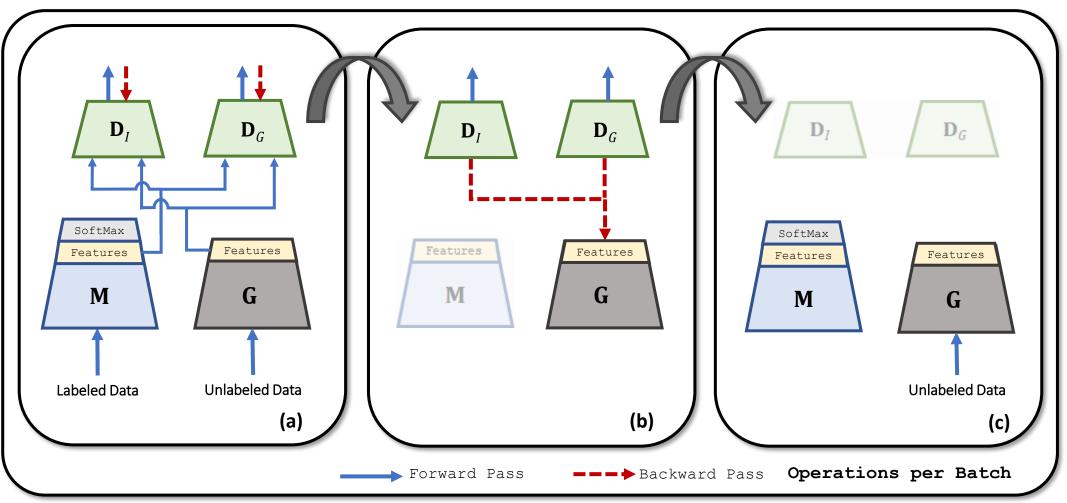


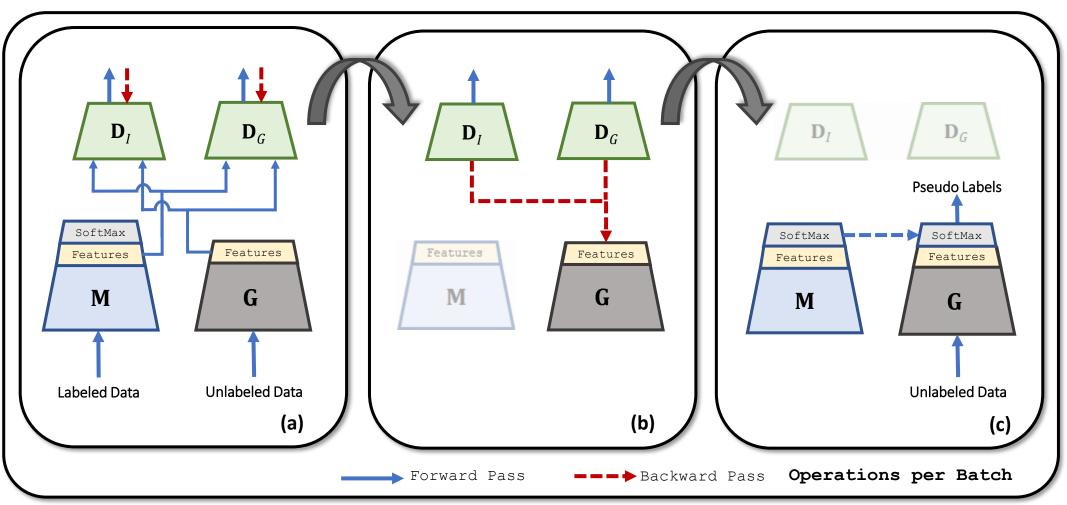


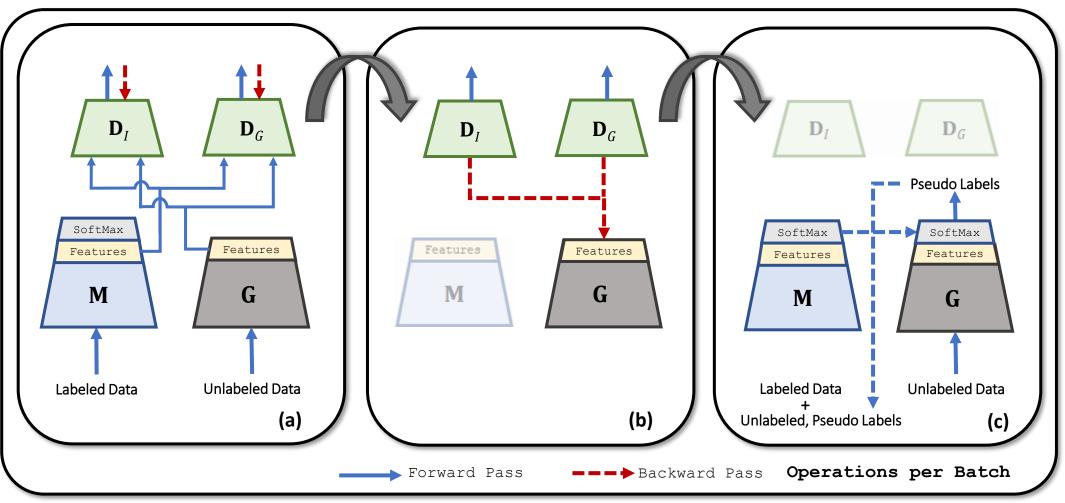


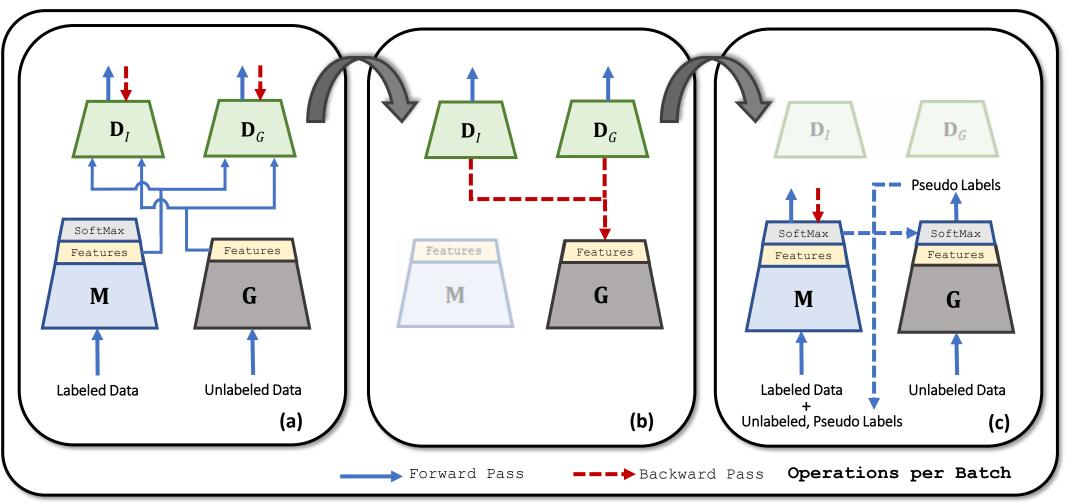












Results

• We perform various experiments on object recognition, character recognition and sentiment recognition.

Target: CIFAR-10 and Source: CIFAR-100			
Methods	Target Accuracy (%)		
Scratch	92.49		
Finetuning	93.27		
Joint Training	93.32		
Pseudo Labels [2]	92.85		
Random Network [39]	92.37		
Jigsaw [33]	75.85		
Colorization [52]	92.57		
Split-Brain [53]	92.60		
AKT (Ours: only D_I)	93.04		
AKT (Ours: with \mathbf{D}_I and $\mathbf{D}_G)$	93.21		

Target: PASCAL-VOC and Source: ImageNet		
Methods	Target mAP (%)	
Scratch	63.5	
Finetuning	87.0	
Joint Training	86.7	
Pseudo Labels [2]	63.2	
Random Network [39]	53.3	
Jigsaw [33]	67.7	
Jigsaw++ [34]	69.9	
Colorization [52]	65.9	
Split-Brain [53]	67.1	
Rotation [12]	73.0	
Rotation Decoupling [10]	74.5	
AKT (Ours: only D_I)	76.9	
AKT (Ours: with D_I and D_G)	77.4	

• Our approach generates reliable pseudo-labels

ImageNet Class	Top-3 Pseudo Label	Score
Fig. a. warplane	aeroplane, bird, car	86.67%
Fig. b. bike	bicycle , motorbike, person	88.46%

(a) Samples from class *aeroplane* from PASCAL-VOC experiment.

(b) Samples from class bike from PASCAL-VOC experiment.

Conclusions

- We propose a novel Adversarial Knowledge Transfer (AKT) framework for transferring knowledge from unlabeled data to the labeled data.
- Our approach does not require the unlabeled data to be from the same label space or data distribution as of the labeled data.
- Unlike, self-supervised methods our method doesn't require explicit pretext task making it highly efficient.
- Experiments on various recognition tasks show the efficacy of our proposed approach over state-of-the-methods.

Acknowledgement

This work is partially supported by NSF grant 1724341, ONR grant N00014-18-1-2252 and gifts from Adobe.

Thank you!

For more details: https://agupt013.github.io/akt.html

