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Brief Statement
How to transfer knowledge from internet-scaled unlabeled data to improve the
performance of given visual recognition task?

Motivation
• Machine learning approaches are data hungry
• Manual data collection is tedious and expensive
• Collected data should have similar data distribution

Problem Overview
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✓ Unlabeled data may have different data/label distribution

✓ Without defining a pretext task as in Self-Supervised Learning
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Results
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• We perform various experiments on object recognition, character recognition and sentiment

recognition.



• Our approach generates reliable pseudo-labels
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• We propose a novel Adversarial Knowledge Transfer (AKT) framework for transferring

knowledge from unlabeled data to the labeled data.

• Our approach does not require the unlabeled data to be from the same label space or data

distribution as of the labeled data.

• Unlike, self-supervised methods our method doesn’t require explicit pretext task making it

highly efficient.

• Experiments on various recognition tasks show the efficacy of our proposed approach over

state-of-the-methods.
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Thank you!
For more details: https://agupt013.github.io/akt.html

Adversarial Knowledge Transfer from Unlabeled Data


