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Bl L Problem Overview

Brief Statement
How to transfer knowledge from internet-scaled unlabeled data to improve the
performance of given visual recognition task?

Motivation
* Machine learning approaches are data hungry
* Manual data collection is tedious and expensive
* Collected data should have similar data distribution
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LLLL Learning Paradigm
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(a) Transfer Learning. (Source: Labeled, Target: Labeled)

1l fius‘f////'/,,,

A

Adversarial Knowledge Transfer from Unlabeled Data m wason A dobe




ACMmultimedia

LLLL Learning Paradigm

Source Data Target Data

(b) Unsup. Domain Adaptation. (Source: Labeled, Target: Unlabeled)
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LLLL Learning Paradigm

Source Data Target Data Source Data Target Data

(a) Transfer Learning. (Source: Labeled, Target: Labeled) (c) Semi-Supervised Learning. (Source: Unlabeled, Target: Labeled)

(b) Unsup. Domain Adaptation. (Source: Labeled, Target: Unlabeled)
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LLLL Learning Paradigm

Source Data Target Data Source Data Target Data

(b) Unsup. Domain Adaptation. (Source: Labeled, Target: Unlabeled) (d) AKT (ours). (Source: Unlabeled, Target: Labeled)
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LLLL Learning Paradigm

Source Data Target Data Source Data Target Data

(b) Unsup. Domain Adaptation. (Source: Labeled, Target: Unlabeled) (d) AKT (ours). (Source: Unlabeled, Target: Labeled)

v" Unlabeled data may have different data/label distribution
v' Without defining a pretext task as in Self-Supervised Learning
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LLLL Proposed Approach
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Proposed Approach
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Proposed Approach
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LLLL Proposed Approach
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Proposed Approach
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Proposed Approach
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Proposed Approach
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Proposed Approach
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Proposed Approach
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e Results

* We perform various experiments on object recognition, character recognition and sentiment

recognition.
Target: PASCAL-VOC and Source: ImageNet
Target: CIFAR-10 and Source: CIFAR-100 Methods Target mAP (%)

Methods | Target Accuracy (%) S?ratch, 63.5

Finetuning 87.0
S.::ratr:h _ 9249 Joint Training 86.7
Finetuning 93.27 Pseudo Labels [2] 63.2
Joint Training 93.32 Random Network [39] 53.3
Pseudo Labels [2] 92.85 Jigsaw [33] 67.7
Random Network [39] 92.37 Jigsaw++ [34] 69.9
Jigsaw [33] 75.85 Colorization [52] 65.9
Colorization [52] 92.57 Split-Brain [53] 67.1
AKT (Ours: only Dy) 3. Rotation Decoupling [10 74.5
AKT (Ours: with D; and Dg) AKT (Ours: only Dy)

AKT (Ours: with Dy and Dg)
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RLLL Results

» Our approach generates reliable pseudo-labels

ImageNet Class | Top-3 Pseudo Label | Score
Fig. a. warplane | aeroplane, bird, car 86.67%
Fig. b. bike bicycle, motorbike, person | 88.46%

(a) Samples from class aeroplane from PASCAL-VOC experiment. (b) Samples from class bike from PASCAL-VOC experiment.
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e Conclusions

 We propose a novel Adversarial Knowledge Transfer (AKT) framework for transferring
knowledge from unlabeled data to the labeled data.

« Qur approach does not require the unlabeled data to be from the same label space or data
distribution as of the labeled data.

« Unlike, self-supervised methods our method doesn’t require explicit pretext task making it
highly efficient.

« Experiments on various recognition tasks show the efficacy of our proposed approach over
state-of-the-methods.
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Thank you!

For more details: https://agupt013.github.io/akt.html
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